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In 2020 we conducted a survey that provided an overview of the governance of ML models – 

looking at the end-to-end model governance process for ML models. ML is increasingly being 

used in areas such as credit risk, compliance, market risk assessment and in insurance 

underwriting, in addition to its use in customer facing areas (such as marketing, and customer 

service). Most firms in our sample are using ML in production (68%), and over a quarter of 

participants have active pilot projects in place (26%).  

Similarly, our 2019 Machine Learning in Credit Risk study found that the adoption of ML in credit 

risk modeling and management had nearly doubled when compared to the results of our 2018 

study. 2 The sophistication of ML models and the breadth of application across customer segments 

also saw a significant increase. In the credit risk area, most FIs were using ML focusing on existing 

retail (consumer) portfolios; where typically FIs possess larger volumes of standardized, high-

quality data. However, our 2019 survey results show that ML is increasingly being used for SMEs 

and other non-retail (i.e., CRE and public sector) portfolios. A recent Bank of England paper also 

signaled similar results, with the use of ML nearly doubling in the last year.3 

Our studies show that the adoption of ML techniques continues to deliver tangible benefits to FIs, 

including improved model accuracy, the ability to overcome data deficiencies and inconsistencies, 

and discovery of new risk segments or patterns.  

For instance, ML’s increased analytical power has been used for model development, for model 

building and variable selection, allowing FIs to filter through several more variables in search of 

significant predictors. For many firms, the use of ML in model development has resulted in an 

increase in model accuracy. ML methods enable FIs to develop a multitude of models, number of 

targets, and multitude of design constructs that allow FIs to see more detailed patterns for 

segments of the population and gain a greater granular understanding of those patterns. 

Similarly, ML has helped firms expand services to new customer segments thanks to new data 

insights. Between 2018 and 2019, the number of FIs deploying models in production for SME 

portfolios rose by more than 350%.  

Although the power of ML in making predictions is often discussed, what is truly impactful is the 

power to help organize and understand data. In fact, FIs that use ML for this purpose report 

achieving a faster return of investment, as better data can enable banks to screen customers and 

transactions more effectively against sanctions lists for instance. In the area of financial crime 

prevention, ML algorithms are being used to partially automate financial crime investigations.4  

However, ML works by ingesting historical data and acting on the objectives detailed by the 

developer. Historical data is inevitably reflective of human biases, including unconscious ones, 

 

2 IIF, Machine Learning in Credit Risk, March 2018; and IIF, Machine Learning in Credit Risk, 2nd Edition Detailed 
Report, July 2019. The full Detailed Reports are limited to official sector and participating firms. The survey results 
include a wider scope than credit scoring and decisioning, including credit monitoring (including early warning 
systems), and for collections, restructuring, and recovering. While there are indeed instances where machine learning 
techniques are being used or explored for modeling purposes, survey results extend to areas that are better 
characterized as ‘Credit Risk Management’. A short-form Summary Report can be accessed at: 
https://www.iif.com/Publications/ID/3525/Machine-Learning-in-Credit-Risk-2nd-Edition-Summary-Report and  
https://www.iif.com/publication/regulatory-report/machine-learning-credit-risk 
3 Bank of England, The Impact of COVID on Machine Learning and Data Science in UK Banking, December 2020. 
Can be accessed at: https://www.bankofengland.co.uk/quarterly-bulletin/2020/2020-q4/the-impact-of-covid-on-
machine-learning-and-data-science-in-uk-banking  
4 IIF, Machine Learning in Anti-Money Laundering, October 2018. The full Detailed Report is limited to official sector 
and participating firms. A short-form Summary Report can be accessed at: 
https://www.iif.com/Publications/ID/1421/Machine-Learning-in-Anti-Money-Laundering  
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Appendix A 

In the following, we address the RFI’s questions on a thematic basis, rather than repeating each 

theme under each question.  

Explainability: 
Question 1: How do financial institutions identify and manage risks relating to AI explainability? What 

barriers or challenges for explainability exist for developing, adopting, and managing AI? 

Question 2: How do financial institutions use post-hoc methods to assist in evaluating conceptual 

soundness? How common are these methods? Are there limitations of these methods (whether to explain 

an AI approach’s overall operation or to explain a specific prediction or categorization)? If so, please provide 

details on such limitations. 

Question 3: For which uses of AI is lack of explainability more of a challenge? Please describe those 

challenges in detail. How do financial institutions account for and manage the varied challenges and risks 

posed by different uses? 

A. Machine Learning Governance 
Firstly, we agree with the premise that machine learning (ML) models should follow the same 

strict requirements that are placed on any other type of model. This includes having (i) a robust 

model development, implementation, and use control framework, (ii) a sound model validation 

process to ensure that models are performing as expected, and (iii) an effective framework of 

governance.  

Our research indicates that FIs use of ML in a production environment is embedded in the firms’ 

model risk management framework. Our latest study6 found that 36% of participating firms apply 

their existing model risk management framework to ML applications, i.e., their framework 

applied for all types of models for the model life cycle purpose, including ML models. However, 

our results also show that 44% were moving towards an enhancement of their current model risk 

management framework to include specific ML considerations to it (15% had developed such 

enhancement and 29% were in the process of developing one). Typically, such enhancements 

included expanding the independent model risk and model validation methods and skillsets to 

better capture ML applications.  

At the regional level, our results show that American firms were using their existing MRM 

framework for ML applications at a noticeably higher level than in other parts of the world. In 

fact, 55.5% of U.S. firms currently utilize their existing model risk management framework, and 

about 33% developed an enhancement to their model risk management framework to provide 

internal guidelines and additional requirements for ML model (e.g., on documentation, training, 

etc.).  

Our survey indicates that the strong processes that U.S. FIs have in place for managing model risk 

set out by the interagency MRM Guidance, also apply for ML models. In the U.S., ML models are 

covered under the broader definition of a model as defined in the MRM Guidance.  Thus, ML 

models are risk rated, with more material and complex models being subject to more robust 

validation and audit requirements. In many cases, methodology is a consideration, which includes 

 

6There are nine U.S. firms in our IIF Machine Learning Governance study.  “Firms” represent banks and insurers. Firms 
are categorized by region according to where they are headquartered, while acknowledging that many have operations 
across multiple jurisdictions.  
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the technique used, characteristics of the model, volume of data used, degree of transparency, and 

in some cases out-of-sample prediction. In practice, models that pose more material model risks 

are subject to stricter requirements. Additionally, there may be mitigating factors that help 

decrease the risk, for e.g., the level of manual oversight over the AI/ML outputs.  Some risks may 

be mitigated by having human-in-loop and/or human-over-the-loop in the decision-making 

process. In cases where the AI/ML output is one of many inputs to a human, the risk is lower and 

alternatives may be acceptable in situations where there is extensive (external) evidence of the 

reliability of the algorithm, and adequate internal testing to demonstrate its reliability in the 

specific context. 

B. Post-hoc Explainability 
We agree with the premise that the importance of conceptual soundness is well established in 

industry practice. The first and most important review point starts with the step reviewing key 

assumptions and limitations; and assessing the applicability of the model to use cases in scope.  

There is no single post-hoc explainability technique that works for all use cases, rather there are 

an array of techniques and solutions that can be applied (and are applied), and their usefulness is 

very much interlinked to the risk of the specific use case. Explainable AI methods are an emerging 

research area and new techniques are evolving to improve existing methods.  

FIs rely on a combination of development processes and post-hoc evaluation and monitoring tools 

to mitigate the risks of models or decision-making. These processes as previously discussed allow 

FIs to better identify when a model is not working as intended.  

Each post-hoc technique provides useful information but must be interpreted with critical caveats 

in mind. Transparency towards customers in terms of explanations of the decision outcomes can 

be achieved with post-hoc techniques, but it requires additional development efforts to provide 

explanations that can be easily understood by a human.  

There are several reviews that have compiled the voluminous work on interpretable ML,7 and this 

area is evolving quickly. Additionally, the IIF Thematic Series on Machine Learning highlighted 

several post-hoc methods used by FIs.8 A summary of some of the techniques listed in our 

Recommendations to Policymakers paper is included on Appendix B, with the caveat that 

Appendix B was written in 2019 and is only a reference for some of the explainability methods 

available and should not be treated as a rule. There are multiple methods for FIs to identify and 

manage risks related to explainability, such as local linear models, sensitivity analyses, use of 

model risk’s independent credible challenge. We classified the range of different techniques by 

the scope of interpretability, i.e., whether the technique provides global or local interpretability. 

Global approaches help understand the entire relationship modeled by the trained response 

function, which are typically approximations or based on averages. Local approaches promote 

understanding of small portions of the trained response function, e.g., clusters of input records, 

and their corresponding predictions, and even single predictions. The wide array of techniques 

includes global surrogate models, local explanations, or contrastive explanations, etc. 9  

 

7 (Guidotti, et al., 2018), (Du, Liu, & Hu, 2019), (Rudin, 2018), (Gilpin, et al., 2019), (Molnar, 2019) 
8 IIF, Machine Learning Thematic Series: Explainability in Predictive Modeling, November 2018; and IIF, Machine 
Learning Thematic Series: Bias and Ethical Implications in Machine Learning, May 2019. Can be accessed at: 
https://www.iif.com/portals/0/Files/private/32370132_machine_learning_explainability_nov_2018.pdf and 
https://www.iif.com/Portals/0/Files/Thematic_Series_Bias_and_Ethics_in_ML.pdf  
9We discuss some of these methods in more detail in Appendix B.  
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Supervisors should clarify expectations around both – internal and external – explainability, 

understanding that the type of information and depth of explanation will vary for each. The need 

for explainability should be proportional to the risk of the use case. For instance, the type of 

explanation needed for customer facing use cases that are higher risk, such as credit underwriting, 

where firms have an obligation to provide reasons for any adverse decision under Reg. B, is 

different than the one required internally for ML models that are used for development and model 

risk management. Existing regulatory guidance does not clarify the degree of explainability 

needed for a model.  

In this vein, non-banks (and especially non-bank consumer lenders) should be subject to similar 

explainability risk management expectations as banks.  

Context Matters 

When discussing post-hoc techniques and explainable AI, context matters. Explanations vary 

depending on the stakeholder, the use case objective, and the risk of the model in question. All 

these need to be considered within a framework based on model governance tools and processes 

to test, monitor, and govern ML models.  

Firstly, explainability risks are not limited to AI/ML models, even traditional regression models 

can have hundreds or thousands of correlated variables making them difficult to explain. 

Additionally, banks may use vendor models where the vendor does not share the inner workings 

of the model, and overreliance on human intervention has historically been problematic as 

humans rely on subjective reasoning and judgment.  

Secondly, a single ML model can have multiple stakeholders: those implementing a ML 

application, management responsible for the application, the FI’s independent control functions, 

conduct regulators, prudential regulators, and the consumer.  

In addition to stakeholder consideration, FIs consider the trade-offs between interpretability and 

model accuracy. The level of understanding needed is often linked to the management of the risks 

associated to the usage of a particular model.  

Most FIs utilize several post-hoc techniques; some of the most commonly referred to in the use of 

ML in credit risk are: feature summary statistic (e.g. feature importance measures), feature 

summary visualization, model internals (e.g. weights in linear models or the learned tree structure 

of decision trees), and data points (e.g. to explain a prediction of a data point, find a similar data 

point by changing some of the features for which the predicted outcome changes in a relevant 

way).  

In practice, model developers conduct analysis on the explainability of AI/ML models using post-

hoc methods during the model development process. Such post-hoc explainability analyses may 

be performed and supported through a number of different techniques such as partial dependence 

plots (PDPs), variable importance analysis, surrogate interpretable models, and other similar 

visualizations that describe behavior / distribution of individual features and their corresponding 

impact on the model output.  

Surrogate models are a technique that has been widely used by FIs, i.e., using a simpler model to 

explain another more complex model to approximate the predictions of the underlying model 

while retaining interpretability. Many surveyed firms reported using LIME, a type of local 
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surrogate model used to explain single predictions of any ML model, in many cases the 

explainable model used typically was LASSO.  

Model usage and risk are also considerations in the level of explainability needed. For instance, 

credit decisions that result in a customer being declined a mortgage loan may have different 

implications than the use of ML for marketing campaigns. Where possible, inherently 

interpretable models should be prioritized for use cases where explainability is critical. For use 

cases where more complex but less transparent models are most beneficial, regulators should 

allow firms to implement appropriate controls/guardrails rather than mandating the use of post-

hoc techniques, which may be challenging. These approaches can also be a challenge when 

working with externally sourced (third-party) models from suppliers who are not yet familiar with 

traditional model risk management frameworks.  

Data Processing and Usage 
Question 4: How do financial institutions using AI manage risks related to data quality and data processing? 

How, if at all, have control processes or automated data quality routines changed to address the data quality 

needs of AI? How does risk management for alternative data compare to that of traditional data? Are there 

any barriers or challenges that data quality and data processing pose for developing, adopting, and 

managing AI? If so, please provide details on those barriers or challenges.  

Question 5: Are there specific uses of AI for which alternative data are particularly effective? 

Question 6: How do financial institutions manage AI risks relating to overfitting? What barriers or 

challenges, if any, does overfitting pose for developing, adopting, and managing AI? How do financial 

institutions develop their AI so that it will adapt to new and potentially different populations (outside of the 

test and training data)? 

A. Data Use, and Alternative Data 
Machine learning applications rely on large amounts of data, and often multiple datasets, thus it 

is crucial to understand what data is being used, if it can and should be used, and do an assessment 

of the potential risks that could arise from the use of that data. 

Alternative data can originate both externally and internally data. Alternative data can be 

collected from online sources, and in some cases include information that is sometimes correlated 

with finance data. Alternative data can therefore include unstructured data, such as text fields, 

voice data, and images, and data coming from a 3rd party provider such as data aggregators.  

Internal data sources have become easier to track with the emergence of natural language 

processing (NLP) techniques and algorithms to derive insights out of data.  

Appropriately used, data can facilitate new and improved products and services, increase revenue 

and mitigate risk. When not appropriately governed, certain data practices can damage the 

company’s reputation and cause a loss of customer and client trust. This goes beyond FIs use of 

AI/ML and is relevant to data practices across any institution. In this vein, non-bank lenders 

should be held to the same rigorous standards applied to banks to ensure that all consumers 

receive effective protections on their data. Consistency in examinations across lenders allows 

federal regulators to detect misuses of alternative data. Having consistent regulation and robust 

compliance management provides effective guardrails to ensure diverse forms of alternative data 

are protected, ultimately increasing access to responsible credit and improving financial crime 

detection and fraud prevention. Additionally, traditional bureau data excludes millions of 
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Americans from equitable access to credit. Using alternative data can foster financial inclusion for 

such groups. 

The risks of alternative data can be magnified when lenders rely on vendor models created with 

alternative data to which lenders have little insights into the type of quality of the data being used 

by the vendor. Thus, alternative data sourced from vendors should be subject to consistent vendor 

oversight and data governance expectations.   

Alternative data, subject to FCRA, should have similar requirements as traditional credit data 

pertaining to dispute resolution, ability to dispute, accuracy and transparency standards. 

Additional barriers with the use of alternative data are inconsistency across data sources, lack of 

full cycle data, gaps from third-party data in how it is gathered, pre-processed, and whether the 

data is acceptable from the fair lending lens. Thus, data quality is critically important. Data 

aggregators, technology platforms, and other alternative data providers should not circumvent 

these consumer protections. All FIs should follow very structured and controlled processes to 

ensure data quality of alternative data.  

According to our 2020 survey, nearly three-quarters (73%) of our sample have established a firm-

wide data governance committee as it relates to ML applications. Enterprise-wide data use 

governance frameworks have been implemented by various FIs to ensure that data is handled and 

used properly. This includes assessing the risks of new uses of data; while governing bodies are 

authorized to approve use of the data, they may impose additional controls to mitigate any 

identified risks. Data use decisions are guided by a set of firmwide data use principles to ensure 

that all sensitive information of the firm, its customers, and clients is protected, and that the 

appropriate use of data creates a positive impact for all stakeholders.   

B. Siloed Data 
Data quality is not a ML-specific issue, however it is an important one. The issues around data 

quality also apply to traditional models. In fact, ML models can perform better and help overcome 

missing variables and data quality challenges better than traditional models.  While data quality 

challenges are omnipresent in banking data, the challenges posed from a ML perspective are 

different. From their experience, this includes the identification and treatment of ‘special values’ 

in numerical variables and missing values, as well as transforming data into the right form and 

engineering the appropriate set of features. 

Issues related to IT infrastructure and siloed data continued to pose a challenge to FIs. From 2018 

to 2019, we saw 178% increase in the number of firms that singled out siloed data as hindering 

their ability to leverage ML fully. This was particularly challenging for multinational FIs with 

legacy IT systems where legacy systems presented a challenge of leveraging data and building 

analytics on top of that data.  

C. Model Validation and Model Monitoring 
The sophistication of validation and the choice of techniques employed to assess the robustness 

of ML models vary depending on several factors, including the use case objective, complexity 

and/or materiality.  
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The most common validation method chosen was “in sample/out of sample testing” (91%) 
followed closely by data quality validation10 (80%) and “outcome monitoring against a 
benchmark” (79%).11 In the U.S., “in sample/out of sample testing” and “outcome monitoring 
against a benchmark was selected at a 100%. This is also the case for model monitoring, where we 
see a variety of feedback mechanisms and controls, and safeguards to mitigate the risks of ML 
models.  

All U.S. firms in our sample have feedback mechanisms in place for ensuring outcomes are as 
expected, and to prevent input data and features from drifting over time. U.S. firms indicated that 
performance monitoring accounts for feedback mechanisms and controls, and that the purpose 

of model monitoring, the assessment of the monitoring results and subsequent actions to address 
any model issues, are required in the model monitoring plan that is designed to capture all 
nuances of a model, including ML models.  

Similarly, FIs use a variety of safeguards to mitigate the risks of ML models, and the choice of 

safeguard(s) are linked to the individual model in question. For example, areas such as marketing 

are less complex and impactful than credit risk or fraud detection. In the U.S., the most common 

safeguard chosen was performance monitoring (88%), followed closely by monitoring model 

accuracy based on thresholds (75%) and third human in the loop (75%).12  

There are several metrics to monitor ML model performance, and the choice of metrics is based 
on factors such as the type of task (i.e., regression versus classification), the business objective, 
the distribution of the target variable, among other aspects. It could include accuracy, false 
positive rate, generalizability (is model performance consistent over time). Other metrics around 

speed, resource usage, might need to have to be met for specific business needs. 

Data Quality Validation 

In our most recent survey, data quality validation was selected by 80% of participants as one of 

the model validation techniques used to assess ML model robustness. Data quality validation 

refers to when one or more techniques are used to ensure potential issues with data (such as class 

imbalances, missing or erroneous data) are understood and considered in the model development 

and deployment process. Examples of these include data certification, source-to-source 

verification or data issues tracking.   

FIs check the completeness, accuracy, availability and consistency of the data through gauges for 

repeatability and reproducibility techniques. In some cases, with newer technology in the 

pipeline, legacy data stores with monthly feeds are being replaced with daily feeds, allowing for 

more timely data.  

Data sources are expected to follow strong requirements when it comes to data quality, data 

descriptions and metadata, data sourcing, as appropriate. Some firms have put in place 

automated, semi-automated and manual solutions that can identify data quality issues in 

datasets.  

 

10 “Data quality validation” refers to when one or more techniques are used to ensure potential issues with data (such 
as class imbalances, missing or erroneous data) are understood and considered in the model development and 
deployment process. 
11 Outcome monitoring against a benchmark” refers to when decisions or actions associated with the ML system are 
monitored using one or multiple metrics. Performance is assessed against a certain benchmark value of those metrics. 
12 Other techniques listed on our ML Governance survey were alert systems, backup systems, guardrails, kill systems, 
and other. 
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Similarly, in our 2020 survey, regardless of the controls selected, all firms reported engaging in 

due diligence to mitigate bias risk in ML models. The quality and relevance of data is scrutinized 

to ensure that models ingest relevant data, as data with a clearly understandable relationship to 

what the model is trying to predict will help mitigate the risk of bias and have a better 

representation of the sample. As such, many firms noted that when a model developer designs a 

model, the quality and relevance of data is scrutinized regardless of whether a ML model or other 

model is used. 

Overfitting 

Overfitting is not unique to AI/ML applications, nor is model drift. Rather, overfitting is 

something that FIs constantly have to manage for. Current model risk management guidelines 

ensure that models are managed appropriately throughout their lifecycle regardless of the 

methodology.  

In a narrow sense, overfitting may refer to a situation where a simpler model has better 

performance on a held-out test dataset than a given model. This may happen if the given model is 

overly complex. In a broader sense, overfitting may refer to a situation where a model corresponds 

too closely, or exactly, to a training data set, and may therefore fail to generalize its predictive 

power to other sets of data. These types of models may rely on limited or restricted data sets that 

do not generalize well in the real world, thus may fail to maintain adequate performance over 

time.  

There are various ways that overfitting can be managed through the progressive phases of model 

development, model validation and model governance. The risks related to overfitting can be 

mitigated using three broad approaches:  

1. Tools to perform automated stability, robustness testing, and overfitting tests, i.e., to 

execute the tests planned as part of test strategy 

2. Continuous model monitoring and improvement as part of post-production activities 

3. Model testing using many stratified hold-out and/or out of time data sets 

Additionally, one key aspect to tackling the overfitting issue is focusing on producing quality 

datasets that can be reused in a systematic way. To achieve that, FIs may invest in data fabrication 

of synthetic data, i.e., create "real-life" usable data that are multi-dimensional depending on the 

model requirement, for instance. 

Additionally, there are standard techniques of cross-validation of the model on out-of-sample 

populations. Different regularizations can be applied during model training, and model 

explainability is another approach. With new data, some firms recommend a monitoring program.  

Validation and governance practices are relevant, such as explainability assessments, OOT 

performance measurement. Overall strong change management and ongoing monitoring, which 

we discussed earlier in our discussion.  

Cybersecurity Risk 
Question 7: Have financial institutions identified particular cybersecurity risks or experienced such 

incidents with respect to AI? If so, what practices are financial institutions using to manage cybersecurity 

risks related to AI? Please describe any barriers or challenges to the use of AI associated with cybersecurity 

risks. Are there specific information security or cybersecurity controls that can be applied to AI? 
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With respect to cybersecurity, regulators have emphasized the necessity for a robust governance 

and risk management framework. As such, FIs maintain rigorous cybersecurity programs 

designed to protect firms and their clients, support secure delivery of services, be adjustable to 

address the risks presented by an evolving threat landscape, and meet regulatory requirements, 

all while remaining technology agnostic and principle based.  

Cybersecurity program typically encompasses the governance, policies, processes, assessments, 

controls, testing, and training efforts required by industry standards and regulators.13  

With the accelerating change in technology and an increasingly sophisticated cyber threat 

landscape, firms leverage their broader risk management frameworks to systematically and 

consistently identify, control, assess, measure, treat, and govern information and cybersecurity-

related risks. The use of AI has the potential to reduce risk and make companies more secure.   

These cybersecurity programs, alongside with current regulatory (NIST Cybersecurity 

Framework, NIST A Taxonomy and Terminology of Adversarial Machine Learning, FFIEC 

Cybersecurity Assessment Tool) and industry guidance (e.g., Financial Sector Profile, 

Microsoft/MITRE Adversarial ML Threat Matrix), provide sufficient security measures and 

guidance to address the risks associated with the introduction and development of AI systems. At 

this time, we do not feel additional controls, or frameworks are required to address the security 

concerns associated with the usage of AI and ML. FIs remain mindful of new risks, and continue 

to systematically and consistently identify, control, assess, measure, treat, and govern 

information and cybersecurity-related risks. 

Risk management of AI and ML models should not be treated differently from other forms of 

technology and should not have its own set of specific standards.  Pursuing additional technology 

specific controls and guidance could create fragmented risk management practices that introduce 

operational burden. 

Dynamic Updating 
Question 8: How do financial institutions manage AI risks relating to dynamic updating? Describe any 

barriers or challenges that may impede the use of AI that involve dynamic updating. How do financial 

institutions gain an understanding of whether AI approaches producing different outputs over time based 

on the same inputs are operating as intended? 

We are interpreting dynamic updating to refer to models that are trained online, (i.e., in live use, 

real time) as opposed to models that are retrained offline (i.e., not in live use) often with 

guardrails. The former is currently not being used extensively by FIs, there are a few use cases 

that could benefit from models that are trained online. 

Our 2020 survey results indicate that all U.S. FIs have implementation platforms that cater for 

the need to frequently update/change model parameters (62.5%) or are in the process of 

establishing them (37.5%). Those with implementation platforms already established indicated 

that their platforms fully support the AI/ML lifecycle including support for model operations with 

associated model revisioning and promotion capabilities.  

 

13 Policies and standards, for example based on the Financial Services Sector Cybersecurity Profile, provide establish 

the administrative, technical, and physical safeguards for protecting firms’ technology environments, facilities, and 

client information.  
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As the maturity level increases, AI developers, risk owners, process owners, users, become more 

comfortable and may consider dynamic updating and put it to use.  Currently, most use cases rely 

on supervised learning with monitoring, and periodic updates to the AI models (with associated 

testing / validation) rather than dynamic updating.  

It is necessary to understand new data patterns, and keep the model updated to operate on these.  

Depending on the risk of usage and complexity of the update, it is critical to understand the 

change, test it before the new learning is put to use. 

In the U.S., MRM guidelines for ongoing model risk management, include model changes and are 

effective at managing the risks of dynamic updating models. Dynamic updating models require 

increased automation of controls typically performed by humans in manually updated models. In 

practice, these can be in the form of more frequent and/or granular monitoring of model 

outcomes, where human oversight is engaged if and when dynamic updating models breach 

allowed parameters.  

Some FIs indicated that this was highly situational and implementation specific as some models 

may be designed to be updated on a more frequent basis depending on the use case. Models may 

be reviewed on a more frequent basis depending on the complexity and materiality of the model, 

which could result in the identification of limitations/overlays.  

Additionally, model implementation platforms can differ based on different business units. Model 

developers typically provide a model lifecycle management solution that allows the model owners 

of the ML model to visualize model results and the ongoing monitoring of performance of key 

model inputs.  

In terms of hurdles to adopting dynamic updating models, some firms face significant software 

engineering challenges involved in developing and maintaining such systems. Some of the 

management techniques that firms are using are automated processes, testing, performing 

explainability checks, and robust validation. In many cases, these types of models have a built-in 

testing for impact analysis and robustness.  

Oversight of Third Parties 
Question 10: Please describe any particular challenges or impediments financial institutions face in using 

AI developed or provided by third parties and a description of how financial institutions manage the 

associated risks. Please provide detail on any challenges or impediments. How do those challenges or 

impediments vary by financial institution size and complexity? 

Our 2020 survey indicated that most U.S. FIs (78%) have principles in place for the use of 

externally sourced data and aggregate scores provided by third parties, and the remaining firms 

are currently defining them.  

In the U.S., most firms indicated having Group Wide Data Principles that cover external data. 

Effective third-party risk management processes can control for any increased risk created by 

using third-party products and services. FIs comply with existing third-party risk management 

guidance from regulators to develop and manage third-party relationships. Additionally, third 

party risk can be managed by relying more on sensitivity analysis and benchmarking per SR11-7. 

 



13 

 

Fair Lending 
Question 11: What techniques are available to facilitate or evaluate the compliance of AI-based credit 

determination approaches with fair lending laws or mitigate risks of noncompliance? Please explain these 

techniques and their objectives, limitations of those techniques, and how those techniques relate to fair 

lending legal requirements. 

Question 12: What are the risks that AI can be biased and/or result in discrimination on prohibited bases? 

Are there effective ways to reduce risk of discrimination, whether during development, validation, revision, 

and/ or use? What are some of the barriers to or limitations of those methods?  

Question 13: To what extent do model risk management principles and practices aid or inhibit evaluations 

of AI-based credit determination approaches for compliance with fair lending laws?  

Question 14: As part of their compliance management systems, financial institutions may conduct fair 

lending risk assessments by using models designed to evaluate fair lending risks (‘‘fair lending risk 

assessment models’’). What challenges, if any, do financial institutions face when applying internal model 

risk management principles and practices to the development, validation, or use of fair lending risk 

assessment models based on AI?  

Question 15: The Equal Credit Opportunity Act (ECOA), which is implemented by Regulation B, requires 

creditors to notify an applicant of the principal reasons for taking adverse action for credit or to provide an 

applicant a disclosure of the right to request those reasons. What approaches can be used to identify the 

reasons for taking adverse action on a credit application, when AI is employed? Does Regulation B provide 

sufficient clarity for the statement of reasons for adverse action when AI is used? If not, please describe in 

detail any opportunities for clarity.  

A. Evaluation and Management 
The evaluation of ML models for fair lending compliance is similar to the evaluation of traditional 
models. For any use related to consumer lending lifecycle where there is adverse action, 
explainability is a mandatory requirement as required by the ECOA. Hence any lack of 
explainability here (potentially for vendor models or 4th party) can be challenging. Further the 
quality of explanation produced by vendors and 4th party may not be easily replicated through 
verification by financial institutions. 

There are regulatory challenges to assessing compliance with fair lending requirements. Thus, 
regulators should consider providing clarity in areas such as the existence of multitude definitions 
of fairness, on the tradeoffs between reducing disparities and model performance, and on how FIs 
should choose among models that have different disparities for different prohibited basis groups.  

In addition to the performance of statistical analyses, some firms rely on the performance of 
qualitative fair lending risk assessments performed by compliance officers with expertise in fair 
lending, data privacy and marketing, for example.  This process identifies potential fair lending 
risks from model use and assesses or requires requisite mitigating controls such as: the adequacy 
of model explainability, appropriate adverse action reasons, alternative variables, statistical 
analysis, and model performance monitoring.   

B. Bias 
The use of ML by FIs has attracted concerns related to the potential for ML models to perpetuate 
existing biases against or for a particular group. However, ML can also be an opportunity to make 
systematic corrections when unfair bias is identified in ways that are not possible through more 
traditional analytics.  
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Managing this risk in ML is crucial to the safe development and deployment of ML models. Bias 
can come from the data, from the model, from the parameters selected, and from the outside 
environment.  

There are numerous steps that can be taken by FIs to tackle issues around unfair bias and ethical 

implications in ML. As with the issues related to explainability, these need to be part of a 

framework that is based on governance tools and processes to test, monitor, and govern the safety 

of ML models.  

FIs should have principles-based guidelines in place describing factors to be considered in the 

deployment of ML. Guidelines should outline relevant questions and risks around ethics and 

discrimination, and FIs should ensure that these kinds of risks are being considered and 

adequately addressed. In fact, many FIs have created and are operationalizing their own internal 

high-level principles around transparency, accountability, ethics, and fairness. 

Because unfair bias and ethical issues can stem from many entry points, they need to be addressed 

within the different stages of the data governance process. The most critical step is that of 

conceptual soundness, which includes identifying where and how bias is present, reviewing key 

assumptions and limitations, and assessing model applicability. Also important is the need for 

traceability, i.e., maintaining records of data characteristics, such as data sources and data 

cleaning, which can help analysis into the outcomes of ML systems. 

Another technique to prevent bias, is unbalanced dataset correction, this should be done when 

the dataset is highly skewed to a certain customer group. Explainability assessments are also 

another tool to control for unfair bias in models, this process is iterative and should be done every 

single time the model is generated and monitored for performance.  

For optimal results, other factors need to work together in establishing accountability around data 

ethics in ML, such as the quality of the data, and the diversity and representativeness of system 

engineers and data scientists. 

As previously mentioned, FIs have several processes and mechanisms in place to ensure fair 

lending practices, including proactively preventing opportunities for unfair bias. In terms of 

underwriting, FIs ensure that underwriting decisions are based on the borrowers’ credit risk 

profile and not on other factors. For mortgages, for example, model-driven indicative rates for 

each loan are determined based on the characteristics of the loan (loan size, credit risk, etc.).  

C. Sensitive Attributes 
Training data is reflective of human history and previous decision-making; thus, dataset bias can 
come from data samples not being representative of a group of subpopulations. Bias can also come 
when the data in the training set correlates with certain protected “sensitive” characteristics that 
cannot be used explicitly, such as race being correlated with area code. Bias can also become 
embedded in data through the process of data cleaning and transformation. For instance, feature 
engineering, which creates tailored attributes based on input variables, can impact ML models. 
The new “features” created may augment and aggregate certain attributes, while minimizing 
others.    

Finally, bias can also come from the outside environment, for instance the current COVID-19 
pandemic initially caused a sudden decrease in the model performance of a number of ML 
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models-.14 The pandemic created a situation that could not be forecasted based on historical data. 
However, the COVID-19 pandemic did highlight the importance of continuous monitoring and 
validation to mitigate the risk.  

Existing restrictions on the use of sensitive personal information can make it more difficult for 
firms to determine if an algorithm discriminates based on a protected characteristic. In fact, 
systems can produce a disparate impact due to the correlations between the variable within a 
sensitive/protective class and other closely correlated variables, for example, zip code and race. 

Non-discrimination laws and data protection laws demand ethics and fairness, and in many cases 
prevent people from being discriminated against on the basis of certain protected characteristics.  

In the U.S., fair lending statutes that prohibit discrimination in lending predates ML. In the U.S. 
firms must not use prohibited basis data or proxies for discrimination, and the direct utilization 
of sensitive attributes in model production or development is viewed by many as unlawful under 
current U.S. anti-discrimination laws. Additionally, as part of the risk assessment procedures, 
such attributes or anything acting as a proxy for any protected class are excluded before 
development commences. 

Additional Considerations  
Question 16: To the extent not already discussed, please identify any additional uses of AI by financial 

institutions and any risk management challenges or other factors that may impede adoption and use of AI.  

Question 17: To the extent not already discussed, please identify any benefits or risks to financial 

institutions’ customers or prospective customers from the use of AI by those financial institutions. Please 

provide any suggestions on how to maximize benefits or address any identified risks. 

Hiring and retaining talent remains an issue for the sector as FIs compete to build 

multidisciplinary teams formed by AI/ML experts, and business domain experts. The need to 

build multidisciplinary and diverse teams impacts all industries but is particularly important for 

FIs as the sector is heavily regulated. The fact remains that it is difficult to find a senior data 

scientist with a business background that can leverage data science to obtain business insights 

and address a business problem.    

Given the potential for ML to provide a broad range of benefits, any policy action should not 

constrain the responsible development and innovative use of this technology, rather its adoption 

and responsible use by FIs should be encouraged.  

AI and ML enables FIs to better utilize the available data, gain rich insights into their clients (and 

prospective clients) and provide services at lower cost due to scale.  The use of externally sourced 

data to supplement internal data could also help expand the business while increasing financial 

inclusion. 

Additionally, AI and ML can also be used to scale up efficiencies and accuracy in areas like 

signature verification, document classification, identity validation, auto-routing of unstructured 

messages, to name a few use cases. 

Current MRM principles have sufficient flexibility that should be upheld for AI/ML models used 

for credit determination. All models should be subject to an appropriate control framework that 

 

14 Bank of England, How has COVID affected the performance of machine learning models used by UK banks, 
February 2021 
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ensures that appropriate controls are in place commensurate with the risk of each specific use 

case, regardless of whether AI or ML techniques are used.  

The IIF stands ready to partner with the official sector to facilitate dialogue between the industry 

and policy makers on issues around the use of AI/ML.  
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Appendix B: Excerpt from IIF Thematic Series Paper: ML 

Recommendations to Policymakers 
 

Appendix B was written in 2019 and is only a reference for some of the explainability methods 

available and should not be treated as a rule. 

Tools for Interpretability  

It is imperative to highlight that each approach has its own limitations, and its usefulness varies 

depending on the case study. Our paper on Explainability in Predictive Modeling published in 

November 2018 presents a current catalog of the many different techniques that can be used to 

gain interpretability of ML models.  

1. Feature Importance 

Feature importance measures the effect that a feature has on the predictions of a model by 

calculating the increase of the model’s prediction error after permuting the feature. Features are 

considered important if permuting their values increases model error, and unimportant if it keeps 

the model error remains unchanged. In other words, it estimates the variance of the model 

prediction due to the exclusion of certain individual features. 

Feature importance tells what’s important, for final or intermediate outputs, but not how it’s 

important,15 which we typically consider to be the explanation.  In some cases, a human can spot 

check whether the machine considers important features that the human believes are not.16  But 

this becomes impractical as dimensionality rises; presupposes a human has this knowledge; 

would suffer from human biases like confirmation bias, especially if the list of “important” 

features is long; and misses latent variables and inter-feature effects. 

Global feature importance measures the overall impact of an input feature on the model 

predictions taking into account nonlinearity. Global feature importance is necessarily averaged 

and thus of limited use to understand sophisticated ML that behave in ways that are not 

monotonic, let alone linear, off the average. This  problem can be reduced somewhat by 

segmenting the output into “regions,” each with its own set of “regionally” important features, but 

this is likely useful only for simpler models where the number of distinct regions is small and 

where the set of important features transition smoothly from one region to the next.17  If the 

number of regions is large, or if the set of important features transitions discontinuously from one 

region to the next, the regional approach reduces to local feature importance, which we describe 

below. 

Local feature importance describes how the combination of learned model rules and individual 

observations’ attributes affect model prediction for that observation. Local feature importance 

suffers from the same problems as local interpretable proxy models, to which we turn below. 

2. Interpretable proxies 
These techniques attempt to mimic a ML model using a linear regression or sparse tree or rules, 

further constrained to be interpretable. Surrogate models attempt to highlight the salient features 

 

15 (Rudin, 2018) 
16 (Du, Liu, & Hu, 2019) 
17 (Ibrahim, Louie, Modarres, & Paisley, 2019) 
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of more complex models. This is done by constructing a simpler model to approximating the 

workings of a more complex one.  

 

Global: Sometimes, a global interpretable proxy suffices to approximate ML behavior.18 Some 

academics suggest a satisfactory global interpretable proxy while others disagree “identifying 

globally faithful explanations that are interpretable remains a challenge for complex models.”19 

In the case of a decision tree surrogate model, the attributes of a decision tree are used to explain 

global attributes of a complex model such as important features, interactions, and decision 

processes. Surrogate model can help visualize, by comparing the “visual” decision making process, 

the important features and interactions to the human knowledge and expectations. 

Local: firms can opt to build local surrogate models, which allows firms to approximate the model 

predictions on particular sub-sections of the data. LIME are local surrogate models, and a method 

for fitting local, interpretable models that can explain single predictions of any ML model. In order 

to remain model-independent, LIME works by modifying the input to the model locally. Rather 

than trying to understand the entire model at the same time, a specific input instance is modified 

and the impact on the predictions are monitored.  

However, local methods can be demonstrably fragile against some irrelevant model differences,20 

meaning models that are globally and locally similar can produce very different explanations, and, 

conversely, demonstrably invariant against some relevant model differences where randomizing 

network weights do not appreciably change the local explanations.  

Additionally, local methods must be constrained to make it interpretable21, e.g., while ML may 

use word embeddings to analyze language, the human-interpretable proxy must treat the 

language as bag of words –and those constraints make the problem hard and that could produce 

an explanation that looks questionable to humans because of those constraints. 

3. Partial Dependency Plots (PDPs) 

Individual Conditional Expectation (ICE) and PDP are tools to increase transparency and 

accountability of complex models. Given the limitations of each, these are typically used together.  

PDPs are a global interpretability method. They show the marginal effect of a feature on the 

predicted outcome of a previously fit model, showing the impact of one or two variables on the 

predicted outcome. It marginalizes the ML model output over the distribution of chosen features, 

so that the remaining function shows the relationship between what we are interested and the 

predicted outcome. The partial function is calculated by averaging out the effects of all other input 

features.  

PDPs are useful tools to display the relationship between the target and a feature and can aid in 

describing the nonlinearities of a complex response function. One disadvantage of this technique 

comes when the features and the PDP are correlated with other model features. PDP’s assumption 

of independence is a challenge, as the features are assumed to be independently distributed from 

the other model features are averaged.  

 

18 (Craven & Shavlik, 1996) 
19 (Ribiero, Singh, & Guestrin, 2016) 
20 (Ghorbani, Abid, & Zou, 2018) 
21 (Rudin, 2018) 
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4. Prediction by Prediction Techniques: 
These techniques help answer the driving factors for a particular individual. This is the case of 

Shapley, and Individual Conditional Expectations (ICEs).  

a. SHAP Value Analysis22  
Firstly, with Shapley value explanations predictions can be explained by assuming that each 

feature is a player in a game where prediction is the payout. It assigns payouts to players 

depending on their contribution towards the total payout. Players cooperate in a coalition and 

obtain a certain gain from that cooperation. The feature value is the numerical value of a feature 

and instance; the Shapley value is the feature contribution towards the prediction; the value 

function is the payout function given a certain coalition of players (feature values).  

With this technique the difference between the prediction and the average prediction is fairly 

distributed among the feature values of the instance. Shapley value can deliver a full explanation. 

It is however time consuming to compute and is used primarily when an approximate solution is 

not feasible. FIs have also indicated that the method can be computationally expensive, given the 

millions of possible coalitions of features.  

b. Individual Conditional Expectations (ICEs) 

ICE plots are the equivalent to a PDP for local expectations, a disaggregated partial dependence 

plot. They provide a type of nonlinear sensitivity analysis where model predictions for a single 

observation are measured while a feature of interest is varied over its domain. They can help 

visualize the dependence of the predicted response on a feature for each instance separately.  

The PDP is the average of the lines of an ICE plot, where the values for each line can be computed 

by leaving all other features unchanged, creating variants by replacing the feature’s value with 

values from a grid and letting the ML model make predictions with these newly created instances. 

The outcome is a set of points for an instance with a feature value from the grid and the respective 

predictions.  

ICEs can uncover heterogenous relationships which is a challenge with PDPs. However, like every 

technique it has disadvantages, primarily in that it can only display one feature meaningfully, as 

two features would require multiple overlaying surfaces. The other issue is that when the feature 

of interest is correlated with others, not all points in the lines might be valid data points. In 

practice, FIs use both PDP and ICE in combination. 

Further techniques that support understanding machine learning models: 

Visualization and exploratory data analysis: Can be useful in providing interpretability of 

the input data.  

Sensitivity Analysis, and investigation on hidden layers: Can be useful in providing 

interpretability at the model level.  

Evaluation possibilities:  

� function-based: i.e., how sparse are the features and does it look reasonable? 

 

22 Lundberg, S. M., & Lee , S.-I. (2017). A Unified Approach to Interpreting Model Predictions. 31st Conference on 
Neural Information Processing Systems (NIPS). Long Beach, CA, USA. Retrieved from 
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf  
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� cognition-based: i.e., what factor should change to change the outcome and what are the 
discriminative features? 

� application-based: how much did we improve the outcomes compared to traditional 
approaches and are explanations useful? 
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